Issue |
Microsc. Microanal. Microstruct.
Volume 2, Number 2-3, April / June 1991
|
|
---|---|---|
Page(s) | 367 - 375 | |
DOI | https://doi.org/10.1051/mmm:0199100202-3036700 |
DOI: 10.1051/mmm:0199100202-3036700
Electron Compton scattering on solids- a feasibility experiment on a PEELS system
Peter Schattschneider1, Peter Jonas1 et Mathias Mändl21 Inst. f. Angewandte u. Techn. Physik, TU Wien, A-1040 Vienna, Austria
2 Inst. f. Angewandte Physik, Univ. Regensburg, D-8400 Regensburg, Germany
Abstract
ECOSS (Electron Compton Scattering on Solids) is a powerful method in order to obtain the momentum density distribution of conduction electrons. Apart from the Bragg-Compton channel coupling which produces a strong and often irregular background, the main problem in ECOSS has been the low count rate at scattering angles where the impulse approximation is valid. Simulations showed that the Gatan 666 PEELS should be capable of producing spectra of sufficient accuracy within a dwell time of some 100 s, when dark current and flat field corrections are applied. Preliminary experiments with Al prove that Compton spectra measured on a Gatan 666 attached to a Philips CM30 compare well with predicted ones. Extraction of the momentum anisotropy on an unprecedented momentum scale of 0.04 a.u. (i.e. ˜ 0.07 Å-1) appears feasible.
7960 - Photoemission and photoelectron spectra.
0707D - Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing.
7145 - Collective effects.
Key words
EEL spectroscopy -- Compton scattering -- Quantum efficiency -- Digital simulation -- Polycrystal -- Signal to noise ratio -- Aluminium
© EDP Sciences 1991