Issue |
Microsc. Microanal. Microstruct.
Volume 5, Number 1, February 1994
|
|
---|---|---|
Page(s) | 31 - 40 | |
DOI | https://doi.org/10.1051/mmm:019940050103100 |
DOI: 10.1051/mmm:019940050103100
Characterization of the metal-semiconductor interface by ballistic electron emission microscopy
Roland Coratger, François Ajustron et Jacques BeauvillainCEMES-LOE / CNRS, 29 rue J. Marvig, BP. 4347, 31055 Toulouse, France
Abstract
Through the results obtained on Au-Si(100) junctions, we show the main aspects of Ballistic Electron Emission Microscopy (BEEM). Spectroscopy allows the local Schottky barrier height to be yielded with a lateral resolution at the interface in the nanometer range. A collector current of electrons is evidenced in the reverse voltage condition. Carrier-carrier scattering is assumed to account for this phenomenon and appears as the dominant process in low energy electron transport. In addition, collector current variations allow BEEM imaging. As the Schottky barrier height is found to be constant in these Au-Si(100) junctions, BEEM image contrast is mainly attributed to scattering in the gold film and interface quality.
Résumé
A travers les résultats obtenus sur des jonctions Au-Si(100), nous présentons les principales caractéristiques de la Microscopie par Emission d'Electrons Balistiques (BEEM). La spectroscopie permet d'obtenir la hauteur de barrière Schottky locale avec une résolution de l'ordre du nanomètre à l'interface. La spectroscopie en mode "polarisation inverse" met en évidence un courant de même sens qu'en polarisation directe. Ce courant peut être interprété en considérant que la diffusion par interaction entre porteurs est le phénomène dominant dans le transport d'électrons de faibles énergies. De plus, les variations du courant collecteur permettent l'imagerie BEEM. La hauteur de barrière Schottky étant constante sur ces échantillons, le contraste des images BEEM est principalement attribué à la diffusion dans le film métallique et à la qualité de l'interface.
7330 - Surface double layers, Schottky barriers, and work functions.
Key words
Experimental study -- Metal-semiconductor contacts -- Schottky barrier -- Barrier height -- Electron microscopy -- Ballistic transport -- Gold -- Silicon -- Semiconductor materials -- Electronic properties -- Condensed matter physics -- Materials science -- Physics -- Metrology -- Condensed state physics -- Electronic transport -- Transition elements
© EDP Sciences 1994